首页> 外文OA文献 >A stabilized Powell-Sabin finite-element method for the 2D Euler equations in supersonic regime
【2h】

A stabilized Powell-Sabin finite-element method for the 2D Euler equations in supersonic regime

机译:超音速状态下二维Euler方程的稳定Powell-Sabin有限元方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper is presented a Powell-Sabin finite-elements scheme (PS-FEM) for the solution of the 2D Euler equations in supersonic regime. The spatial dis-cretization is based on PS splines, that are piecewise quadratic polynomials with a global C 1 continuity, defined on conforming triangulations. Some geometrical issues related the practical construction of the PS elements are discussed, in particular, the generation of the control triangles and the imposition of the boundary conditions. A stabilized formulation is considered, and a novel shock-capturing technique in the context of continuous finite-elements is proposed to reduce oscillations around the discontinuity, and compared with the classic technique proposed by Tedzuyar [1]. The code is verified using manufactured solutions and validated using two challenging numerical examples, which allows to evaluate the performance of the PS discretization in capturing the shocks.
机译:本文提出了一种在超音速状态下求解二维Euler方程的Powell-Sabin有限元方案(PS-FEM)。空间离散化基于PS样条曲线,PS样条曲线是具有整体C 1连续性的分段二次多项式,在符合三角剖分中定义。讨论了与PS元素的实际构造有关的一些几何问题,尤其是控制三角形的生成和边界条件的施加。考虑了一个稳定的公式,并提出了一种在连续有限元情况下的新型减震技术,以减少不连续点周围的振荡,并与Tedzuyar提出的经典技术进行了比较[1]。该代码使用制造的解决方案进行了验证,并使用两个具有挑战性的数值示例进行了验证,从而可以评估PS离散化在捕获冲击时的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号